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Outline 
• Introduction: Brief overview of some sites 
• Aqueous speciation in natural waters 
− Complexation with inorganic and organic ligands 
− Redox reactions 

• Sorption to minerals and sediments 
− Evaluation of sorption models (empirical Kd 

approaches, simple SCM, bond valence based SCM)  
• Precipitation/formation of nanoparticulates 
• Interaction with microorganisms 
• Case study: Uranium Bioremediation 
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Introduction – U-contaminated Sites 

http://www.em.doe.gov/pdfs/Groundwater_Booklet-2008.pdf 
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Introduction – U-contaminated Sites 
S-3 Waste Disposal Ponds at the U.S. DOE  
Oak Ridge Reservation 

 
 
 
 
 
 
 

 
http://public.ornl.gov/orifc/images/S3_ponds.jpg  
http://public.ornl.gov/orifc/images/S3ponds_parking_lot.jpg  
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Need for Understanding U and Pu 
Geochemistry – Risk Evaluation 

http://picturethis.pnl.gov 
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Major Reactions Influencing Uranium 
Environmental Behavior 

• Oxidation/Reduction  

• Precipitation/Dissolution 

Biogenic uraninite nanoparticles,  
Burgos et al., 2008 

• Aqueous  Complexation 

Soluble UO2(CO3)3
4- complex. Clark et al., Chem. Rev., 

1995, 95 (1), 25-48 
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• Sorption/Desorption 

UO2
+2 

sorption desorption 

- H+ 

+ H+ 

≡SOUO2
+2 



Aqueous Complexation - Outline  

• Common oxidation states 

• Common groundwater ions 

• Hydration of the actinides 

• Hydrolysis reactions 

• Complexation with halides 

• Complexation with oxyanions 

• Complexation with natural organic matter 
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Equilibrium Constants 
• Given reaction: 

 aA + bB  cC + dD 
 

• Ko is the equilibrium 
expression under standard 
conditions 
 

• Kc is a concentration-based 
equilibrium constant based on 
the given solutions conditions 
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Different names for the same thing (products over reactants) 
Stability constant = equilibrium constant = equilibrium for a metal-complex 
Dissociation constant = acid/base dissociation (i.e., pKa) 
Hydrolysis constant = metal ion hydrolysis (i.e., reaction with water/OH-) 
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Uranium Oxidation States 
• Under environmental 

conditions, U(IV) and U(VI) are 
expected to be stable 
 

• Similar to Pu, the tetravalent 
U(IV) state is relatively 
insoluble and immobile, while 
hexavalent U(VI) is more 
soluble and mobile in many 
environmental systems 
 

• The varying mobility of Pu and 
U oxidation states gives rise to 
many redox-based remediation 
strategies 
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Influence of Effective Charge 
• Most processes concerned with actinides in  

oxidation states III-VI 
− An(III) and An(IV) present as free ions 
− An(V) and An(VI) present as actinyl ions AnO2

+ and AnO2
2+ 

• Overall effective charge of the ions does not follow 
formal charge (Rao and Choppin, 1984) 

An4+   >   AnO2
2+   ≈   An3+   >   AnO2

+ 

 4+            3.3+            3+           2.3+ 

An+ 

O 

O 

An++ 

O 

O 
An4+ An3+ 

Increasing  Complexation  
Affinity/Strength  
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General Solution Chemistry Trends 
• In neutral pH (5-9) natural waters, actinide ions hydrolysis readily. 

Therefore, solubility is generally limited to <10^-6 M, with the notable 
exception of pentavalent actinides 

• Hydrolysis leads to An(OH)4(s) and AnO2(s), which may have a 
colloidal character 

• Other dissolved heavy elements are present at solubility concentrations 
of the actinides. Therefore, there is significant competition for 
chemical reactions 

• Complexing ions such as carbonate, phosphate, humic substances, etc., 
may stabilize actinides as monomeric ions 

• All the above reactions are highly dependent on the oxidation state of 
the actinide 

• Stability of oxidation states vary for each actinide and the components 
within natural waters. Redox chemistry between actinides is not 
necessarily comparable. However… 

• Chemical behavior between oxidation states is generally similar 
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Actinide Hydration – An(H2O)x 

• Complexation reactions with water  
• f-element salts are fairly soluble in water  
• Strong ion-dipole interactions create a 

primary hydration sphere 
• Additional hydration layers created from 

additional dipole-dipole interactions 
• Hydration state and number is  

influenced by effective charge (see next 
slide) 
 
 

An(IV),  NH2O = 8 
An(VI),  NH2O = 5 
Vallet et al., 2001 
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Actinide Hydration 
• U(III)  - data indicate 9-10 hydrating 

waters with a U-O coordination 
number of 9 or 10 

• U(IV) – 8 hydrating waters with an 
U-O coordination number of 8 

• U(V)  – 5 coordinating waters with an 
overall U-O coordination number of 7 
(5 waters and 2 axial oxygen atoms) 

• U(VI) – 5 or 6 coordinating waters 
with an overall U-O coordination 
number of 7 or 8 (5 or 6 waters with 2 
axial oxygen atoms) 

An(IV),  NH2O = 8 

An(VI),  NH2O = 5 
Vallet et al., 2001 
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Actinide Hydrolysis 
• General reaction 
  xAnz+  +  yH2O   Anx(OH)y

xz-y  +  yH+ 

 
• Occurs for all actinide ions 

− An(IV) – begins in acidic (~pH 1) solutions 
− An(III), An(VI) – begins in weakly acidic to neutral solutions 
− An(V) – begins above pH 8 

 
• Note: reaction can be written as 
  xAnz+  +  yOH-   Anx(OH)y

xz-y 

 
 

• What is the relationship between bo and bo*? 
 

• What trend do you expect regarding the strength of hydrolysis from 
An(III), An(IV), An(V), An(VI)?  

2
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Tetravalent Actinide Hydrolysis 
 Chemistry of the Actinide and Transactinide Elements, 2006  

 

Constants for rxn: An4+ + xOH-  An(OH)x
4-x 
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U(IV) Hydrolysis 

• System conditions: [U(VI)] = 10nM, ionic strength = 10mM, variable pH 
 

• Modeled with hydrolysis constants from previous slide using Hyss 
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U(VI) Hydrolysis, UO2
2+ 

• Hydrolysis of U(VI) has been extensively studied 
 

• Hexavalent actinides form a wide variety of polynuclear species 
 

The Chemistry of the Actinide and Transactinide Elements, 2006 
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Uranium Hydrolysis, [UO2
2+] = 1E-8 mol/L 

Modeled using Geochemist Workbench, LLNL Database 
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Uranium Hydrolysis, [UO2
2+] = 1E-3 mol/L 

Modeled using Geochemist Workbench, LLNL Database 
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Actinide Halide Complexes (F-, Cl-, Br-, I-) 
• With the exception of F-, 

complexes are relatively weak 
 

• Limited data because high 
ligand concentrations and 
acidic conditions are 
required 
 

• Complexation strength  
− F- >>> Cl- >Br- > I- 

 
 

• Note: In very strong acids, 
anionic species may form, 
such as UO2(NO3)x

2-x, UCl6
-2 

 

• These and similar species are 
extremely important for 
separating actinides on ion 
exchange resins 
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F- Cl- Br- I- OH- 
U(VI) 5.16 0.17 0.2   8.4 
U(IV)  9.42 1.72 1.42 1.25 13.4 
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Complexation with Oxo-ligands 
• General trend:, Cl-, NO3

-< F-, SO4
2-, HPO4

2- < CO3
2-, OH-  

 

• NO3
- generally forms stronger complexes than Cl- 

 

• Primarily due to bidentate binding 
 

• Complexation with other oxo-ligands extremely 
important for understanding environmental behavior 
 

• Carbonate complexes are of particular importance 
 

CO2(g) <-> CO2(aq) log KH = -1.47 
CO2(aq) + H2O <-> H2CO3(aq) log Keq = -2.70 

H2CO3(aq) + H2O <-> H+ + HCO3
- log K1= -6.35 

HCO3
- <->  H+ + CO3

-   log K2= -10.33 
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Tetravalent Actinide-Carbonate 
Complexes  Clark et al., Chem. Rev. 95, 1995, 25-48 

 

•  β1,5 U(IV) carbonate complex is approx 8 orders of 
magnitude greater than  β1,5  Th(IV) carbonate complex 

•  β1,5 U(IV) carbonate complex is approx 10 orders of 
magnitude weaker than  β1,5  Pu(IV) carbonate complex 
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Reaction Ionic 
Strength log K 

U4+ + 5CO3
- <=> U(CO3)5

6- 0 34.0 +/- 0.9 
U(CO3)4

4- + CO3
2- <=> 0 -1.12 +/- 0.22 

Th4+ + 5CO3
2- <=> Th(CO3)5

6- 1 26.2 +/- 0.2 

Pu4+ + CO3
2- <=> PuCO3

2+ 0.3 17.0 +/- 0.7 
Pu4+ + 2CO3

2- <=> Pu(CO3)2
0 0.3 29.9 +/- 0.96 

Pu4+ + 3CO3
2- <=> Pu(CO3)3

2- 0.3 39.1 +/- 0.82 
Pu4+ + 4CO3

2- <=> Pu(CO3)4
4- 0.3 42.9 +/- 0.75 

Pu4+ + 5CO3
2- <=> Pu(CO3)5

6- 0.3 44.5 +/- 0.77 
Pu4+ + 2CO3

2- + 4OH- <=> Pu(OH)4(CO3)2
4- 0.1 46.4 +/- 0.70 



Comparison of Pu(IV)-CO3-OH and U(IV)-CO3-OH Systems 
Modeled using Hyss and constants on previous slide 

• Due to the higher complexation strength of Pu(IV) relative to U(IV), high 
carbonate concentrations can prevent hydrolysis at neutral pH values for Pu(IV) 

• U(IV) complexation with hydroxide is stronger than carbonate, thus the 1:5 
U:CO3 species does not appear in the plot above.  

• System conditions: [Actinide] = 10nM, [CO3
2-] = 10mM  
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U(IV)-CO3-OH Speciation
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Pentavalent Actinide Carbonate Species 
Clark et al., Chem. Rev. 95, 1995, 25-48 
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Reaction Ionic 
Strength log K 

UO2
+ + 3CO3

2- <=> UO2(CO3)3
5- 0 7.41 +/- 0.27 

NpO2
+ + CO3

2- <=> NpO2CO3
- 0.5 4.2 +/- 0.1 

NpO2
+ + 2CO3

2- <=> NpO2(CO3)2
3- 0.5 6.4 +/- 0.2 

NpO2
+ + 3CO3

2- <=> NpO2(CO3)3
5- 0.5 7.8 +/- 0.3 



Uranyl Carbonate Species 
Clark et al., Chem. Rev. 95, 1995, 25-48 
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(UO2)3(CO3)6
6- 

UO2 (CO3)3
4- 

Reaction Ionic Strength  log K 

UO2
2+ + CO3

2- <=> UO2(CO3)0 0 9.68 ± 0.04 

UO2
2+ + 2CO3

2- <=> UO2(CO3)2
2- 0 16.94 ± 0.12 

UO2
2+ + 3CO3

2- <=> UO2(CO3)3
4- 0 21.60 ± 0.05 

3UO2
2+ + 6CO3

2- <=> (UO2)3(CO3)6
6- 0 54.00 ± 1.00 



Uranyl Carbonate Speciation 
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Modeled using Visual MINTEQ, Standard Database 
Conditions: 1mM NaNO3, atm CO2(g), 1µM U(VI) 



Ternary Alkali Metal-uranyl-carbonate Species 
• Recently, a series of very stable alkali metal-uranyl-carbonate species was identified 

 

• It appears these complexes may be responsible for unexpected results in uranium 
bioremediation efforts (Brooks et al., 2003) 
 

• The Ca-UO2-CO3 species was subsequently identified at environmental 
concentrations using EXAFS spectroscopy (Kelly et al., 2007) 

Dong and Brooks, ES&Environ. Sci. Technol., 40 (2006), pp. 4689–4695, 2006;  
Brooks et al., Environ. Sci. Technol., 37 (2003), pp. 1850–1858 
Kelly et al., Geochimica et Cosmochimica Acta 71 (2007), pp. 821–834 
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Uranyl Carbonate Speciation 
Influence of Ternary Ca-UO2-CO3 Species 

 

Modeled using Visual MINTEQ, Standard Database 
Conditions: 1mM Ca(NO3)2, atm CO2(g) 
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Naturally Occuring Ligands 
• Organic materials generated as exudates by 

organisms and plants and byproducts of decay of 
organic material 
 

• Aliphatic organics 
− Formic acid (pKa 3.8) 
− Acetic acid (pKa 4.8) 
− Oxalic acid (pKa 1.3) 

 

• Amino acids 
− Glycine 
− Aspartic acid 
− Common formula 

 

• Saccharides 
− Glucose, cellulose, lignin 

R 
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Examples of Natural Organic Matter 
(DFOB and citric  
acid shown for comparison) 

Fulvic acid 

Citric acid 
Desferrioxamine-B 

Humic acid  (Stevenson 1982) 
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U(VI) - Citric Acid Complexation 

• Modeled using Geochemist workbench 
• Conditions: [U(VI)] = 1uM, [NaCl] = 10 mM, [citric acid] = 10 uM 

33 



Humic Acid – Actinide Complexation 
Silva and Nitsche, 1995, Radiochim. Acta 
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Oxidation/Reduction – Outline  

• Common oxidation states 
 

• Redox speciation in natural waters 
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Uranium Oxidation/Reduction 
• Oxidation state has profound influence on U mobility 
− U(IV)4+ << U(VI)O2

2+ ≈ U(III)3+ < U(V)O2
+   

 

U+ 

O 

O 

U++ 

O 
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U(OH)x
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U(OH)x
(3-x) 
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Uranium EH-pH Diagram, Closed System 
GWB Model, LLNL Database 
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Note: The species shown is 
the species representing 
the majority of the analyte 
in the system. There could 
be other species present at 
significant concentrations 
which are not shown. 
Think about these 
diagrams as you are 
looking “down” on a 
speciation versus pH 
diagram. 
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pH diagram. 
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Uranium EH-pH Diagram, Open System 
GWB Model, LLNL Database 
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Uranium Reduction by AH2DS  
Wang et al., RCA, 2008, 599-605 

• Maximum U(VI) reduction 
rate followed the order: 

   OH- > CO3
-- > EDTA > DFOB 

 
• Reverse trend of the 

thermodynamic stability of 
the complex 
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Np Reduction by Quinonoid Enriched Humic 
Derivatives  Shcherbina et al., Env. Sci. Tech., 41, 7010-7015, 2007 
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  Sorption/Desorption 
• Overview of mineral water interface chemistry 
• Quantifying sorption processes 
• Sorption in binary systems 
• Influence of aqueous chemistry on sorption  

– Aqueous complexation with inorganic ions 
– Redox reactions complexation on sorption  
– Complexation with organic ions 

• Colloidal transport of plutonium 
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Scott Fendorf Soil and Biogeochemisry Research http://soils.stanford.edu/     



Sorption Distribution Coefficients 
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[U]o = initial aqueous U conc. 
[U]t = aqueous U conc. at time t 
V = solution volume 
m = mass of solid phase 
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Empirically Quantifying Sorption Processes 
• Linear Distribution Coefficient, Kd 

 
 
 

− Typically determine [An(t)]solid by difference during 
sorption tests 

 
 
• Empirical Isotherms 

 
− Freundlich 

  
− Langmuir 

 

aqu

solid
d tAn

tAnK
)]([
)]([

=

n
aqufsolid tAnKtAn )]([)]([ =

solids

aqu
aqutotalsolid mass

Volume
tAnAntAn *))]([]([)]([ −=

aqul

aqulsolid
solid tAnK

tAnKAn
tAn

)]([1
)]([(max)][

)]([
+

=

45 



Langmuir Sorption 
Isotherm 
Stumm and Morgan, 1996, Chapter 9 
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Freundlich and Langmuir 
Sorption Isotherms  
(Stumm and Morgan, 1996, Chapter 9) 
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Surface Complexation Reactions 

≡SOH + H+ ⇔ ≡SOH2
+ 

≡SOH ⇔ ≡SO- + H+ 

≡SOH + Mn+ ⇔ ≡SOMn-1 + 
H+ 

 

∆G = -RT ln K 
∆Grxn = ∆Gchemical + ∆Gelectrostatic 

 
 

+
2

+ +

[SOH ] FψK = exp
[SOH]{H } RT

 
 
 

- +

-
[SO ]{H } FψK = exp -

[SOH] RT
 
 
 

+

n-1 +

M

[SOM ]{H } FψK = exp ( 1)
[SOH]{M } RTn n+

 − 
 

Figures from Stumm, Chemistry of the Solid Water Interface 
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Surface Complexation Reactions 

Stumm and Morgan, 1996 
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Surface Charge Versus pH 

Modified from Stumm and Morgan, 1996 
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Cation Sorption: Actinide Sorption Trends 

• Sorption of actinides to goethite versus pH 
− Unpublished data from Shanna Estes, Clemson University, 2011 

• Sorption affinity follows expected trend 
• An(IV) > An(VI) > An(III) > An(V) 
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Effect of Carbonate on Uranium Sorption 
to Hydrous Ferric Oxide 
Waite et al., Geochim Cosmo. Acta, 58, 5465-5478, 1994 
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Effect of Carbonate on Uranium Sorption 
to Goethite Hsi and Langmuir, Geochim Cosmochim. Acta, 49(11), 2423-2432, 1985 



Uranium- Carbonate Ternary Complexes 
Bargar et al., Geochimica et Cosmochimica Acta, 2000 

• Ball and stick 
models of 
postulated uranium 
surface complexes 
 

• All have the 
potential to facilitate 
uranium sorption 
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Determination of Ternary Surface-actinide-
carbonate Species Arai et al., ES&T, 41, 3940-3944, 2007 
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Stabilization of U(V) surface complexes on mica 
Ilton et al., Inorg. Chem. 2005 

• Uranium oxidation state 
distribution as a function of time 
at pH 5 (left) and a function of 
pH after 3 hours (right) 
 

• U(V) stabilized during reduction 
of U(VI) on ferrous mica surfaces 
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Influence of Humic Acid on Uranium 
Sorption Lenhart and Honeyman, 1999 
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Influence of Humic Acid on Uranium 
Sorption  Lenhart and Honeyman, 1999 
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Influence of Humic Acid on Uranium 
Sorption  Lenhart and Honeyman, 1999 
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  Precipitation/Dissolution 

• Expected (nano)precipitates under 
environmental conditions 
 

• See webinars on “Uranium Chemistry” and 
“Plutonium Chemistry” for detailed 
discussions of many solid phases 
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Uranium Bearing Solids 
• Hundreds of known solid phases  

 

• See Burns (1999) and Finch and Murakami (1999) for 
detailed discussions 
 

• Insoluble phases primarily U(IV) phases as oxides, 
silicates and phosphates 
− UO2(c) + H4SiO4  USiO4(c) + 2H2O 

 

• U(VI) minerals commonly formed via oxidation and 
weathering of U(IV) phases (examples below) 
 
 

U(IV) Phase U(VI) Phase 

Uraninite, UO2(s) Autinite Ca2(UO2)2(PO4)2 

Coffinite, USiO4(s) Schoepite, UO3
.2.25H2O 

Cartonite, K2(UO2)2(VO4)2 
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Relevant U(VI) Mineral Phases 
 from Sowder, Ph.D. Dissertation, Clemson University, 1999 
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Sequestration of U(VI) Via Sorption and 
Uranyl Phosphate Precipitation  Fuller et al., 2002 

Text from Fuller et al., Figure 6 
Caption 

• a) Backscatter SEM image of HA 
with 4700 ppm sorbed U(VI) 
(UHA-2C). U not detected by 
backscatter imaging or by EDS. 

• (b) Backscatter image of HA with 
77 500 ppm sorbed U(VI) (UHA-
80K). Bright areas indicate 
secondary U phase. Only U and P 
were detected in this material by 
EDS.  

• (c) Secondary electron image of 
autunite formed by reaction of 
U(VI) with HA at U:P ) 1 (UHA-9) 
illustrating fine-grained 
precipitate and altered HA grains. 
The inset is higher magnification 
of an altered HA grain.  

• (d) Secondary electron image of 
chernikovite precipitated in the 
absence of HA (U-P200). 
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Case Study: Uranium Bioremediation 
• A common approach to remediation of 

contaminated sites is to reduce mobile U(VI) to an 
insoluble/immobile U(IV) state 
 

• Commonly achieved by stimulating microbial 
activity to promote reducing conditions 
 

• Evidence for direct and indirect reduction of 
uranium 
 

• Some indications that reoxidation of uranium may 
occur (Wan et al., 2005) 
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Influences of Microrganisms on Actinide 
Environmental Behavior  Neu et al., 2010 



Biogenic Uranium Nanoparticles 
Burgos et al., Geochimica et Cosmochimica Acta 72 (2008) 4901–4915 
Schofield et al., Environmental Science and Technology, 2008, 42, 7898-7904 

Burgos et al., 2008 

Schofield et al., 2008 
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U(VI) Reduction to Mononuclear U(IV) 
Fletcher et al., Environ Sci. Tech., 2011 

• Despite frequent observations of uraninite formation, mononuclear U(IV) was 
observed 
 

• Bernier-Latmani et al., 2010, also observed several non-uraninite reduced 
species, which were primarily influenced by phosphorous metabolites 
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Dong and Brooks, ES&T, 2006 Wan et al., ES&T, 2005 

68 



Field research sites 

• Note there is a wealth of information on uranium 
remediation at DOE  Integrated Field Research Sites 

• These sites are managed within the Subsurface 
Biogeochemical Research program of the DOE 
Biological and Environmental Research, Climate 
and Environmental Sciences Program 

• http://doesbr.org/research/ifrc.shtml  
− Hanford, WA: http://ifchanford.pnnl.gov/ 
− Rifle, CO: http://ifcrifle.pnnl.gov/  
− Oak Ridge, TN: http://www.esd.ornl.gov/orifrc/  
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Summary 
• Uranium exhibits remarkably complex behavior under 

environmental conditions 
 

• Hundreds of known solid phases of varying chemistries 
 

• Predominantly U(IV) and U(VI) states although U(III) and 
U(V) are accessible under environmental conditions 
 

• Aqueous chemistry of U(VI) is profoundly influenced by 
carbonate complexation, including alkaline earth-uranium-
carbonate ternary complexes 
 

• Remediation strategies 
− Reduction of soluble and mobile U(VI) to insoluble and relatively 

immobile U(IV) is a common remediation strategy 
− Precipitation of insoluble U(VI) phosphate phases 

 

• Numerous products observed during remediation activities, 
all of which have somewhat unique characteristics to the 
system in which they are formed 
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Future NAMP Radiochemistry 
Webinars  
 
• Actinide Chemistry Series 
− Analytical Chemistry of Uranium and Plutonium 
− Source Preparation for Alpha Spectroscopy 
− Sample Dissolution 

• Radium Chemistry 
 

  NAMP website: www.inl.gov/namp  
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