

National Analytical Management Program (NAMP) Savannah River National Laboratory U.S. Department of Energy Savannah River

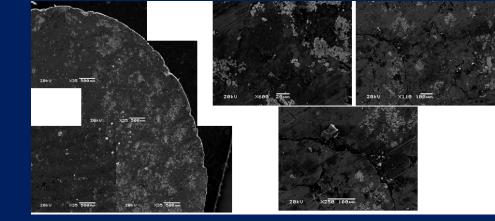
Radiochemistry Webinars

Nuclear Fuel Cycle Series Nuclear Waste Management - Application to Technetium

In Cooperation with our University Partners

Meet the Presenter...

Dr. Edward Mausolf


Dr. Edward Mausolf is an Associate Research Chemistry Department at the University of Nevada, Las Vegas (UNLV), and a joint appointee Scientist with the Pacific Northwest National Laboratory within the National Security Directorate. He received his Ph.D. in Radiochemistry in 2013 from UNLV, with a research emphasis on the investigation of nuclear reprocessing of uranium and the development of advanced technetium waste forms.

emphasis on the investigation of nuclear reprocessing of uranium and the development of advanced technetium waste forms.
His current research is focused on the development of accident tolerant nuclear fuels.
Dr. Mausolf has a patent pending on methods designed to reprocess nuclear waste within the reactor while under operation, with a secondary emphasis on the stabilization of fuel for use in intermediate storage, or direct geological disposal of used nuclear fuel. His expertise in the nuclear fuel cycle provides significant knowledge around fuel forms, fuel separations, and various characterization techniques such as microscopy, corrosion, and inorganic hard-synthesis techniques,

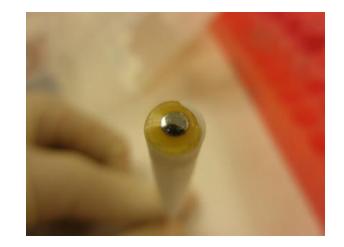
which is leveraged through innovative strategies to develop intellectual property from his research.

Contact Information: Dr. Edward Mausolf mausolfe@unlv.nevada.edu

UNIV

Nuclear Waste Management-Application to Technetium

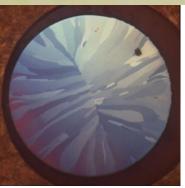
Dr. Edward Mausolf Pacific Northwest National Laboratory University of Nevada Las Vegas


National Analytical Management Program (NAMP)

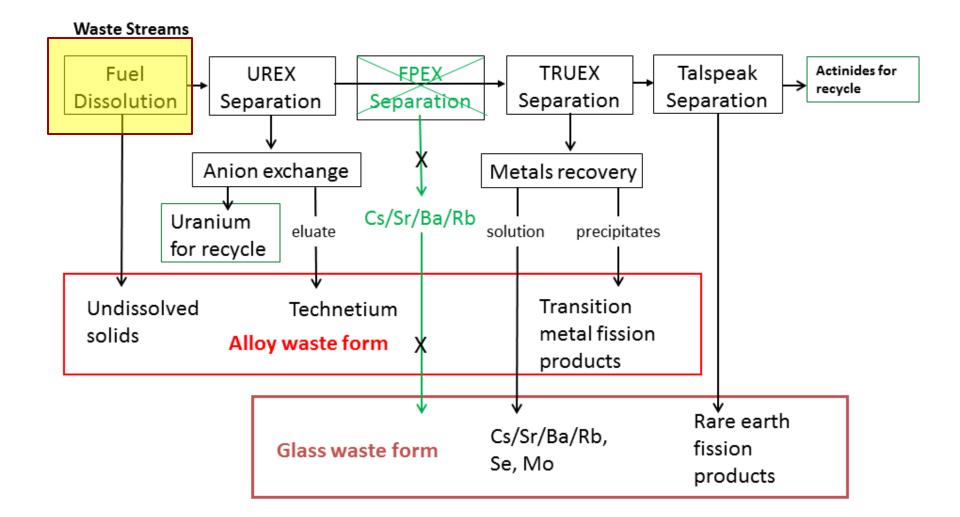
TRAINING AND EDUCATION SUBCOMMITTEE

Outline

- Introduction
- Nominal composition of used fuel
 - The Fe-solid solution; single phase of the metal alloy
- Synthesis of Tc metal and alloys
 - Solid phase
 - Electrodes
- Electrochemical Techniques and Interpretation of Data
 - Electrodes and evaluated electrochemically
- Results and conclusions

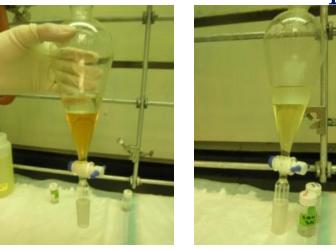

Technetium is a Long-term Threat to the Biosphere

- Technetium is a key dose contributor in a generic repository modeling if TRU elements are greatly reduced by advanced recycling. The long half-life of 99Tc ($t1/2 = 2.14 \times 105$ years) and its high mobility and solubility as pertechnetate create a long-term threat to the biosphere.
- Two primary methods for managing the long-term threat of 99Tc to the biosphere have been considered:
 - Transmutation to 100Ru or
 - Using a robust waste form/repository system to control release to acceptable levels over a long period of time (~1 million years).

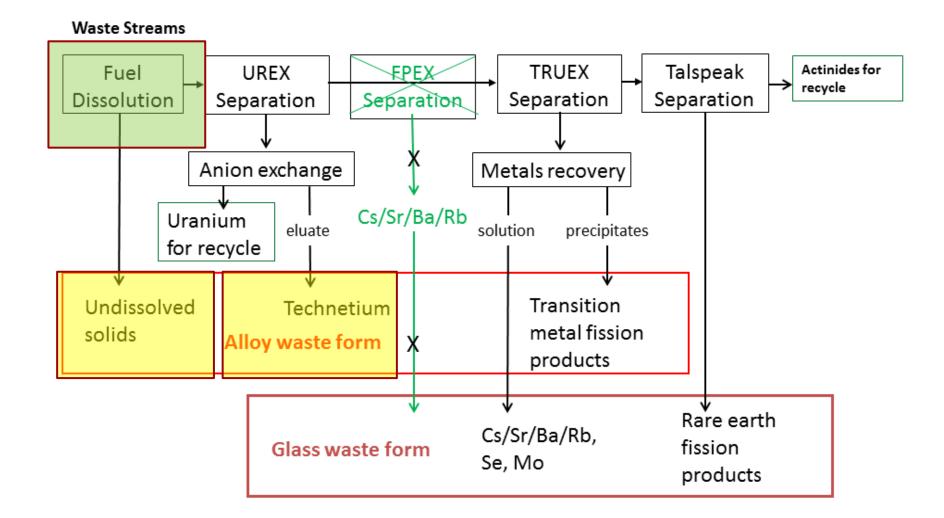


TcZr Waste-Form

Microscopic cross section of irradiated Tc target Konings et al., http://www.nea.fr/html/pt/docs


Tc Waste streams

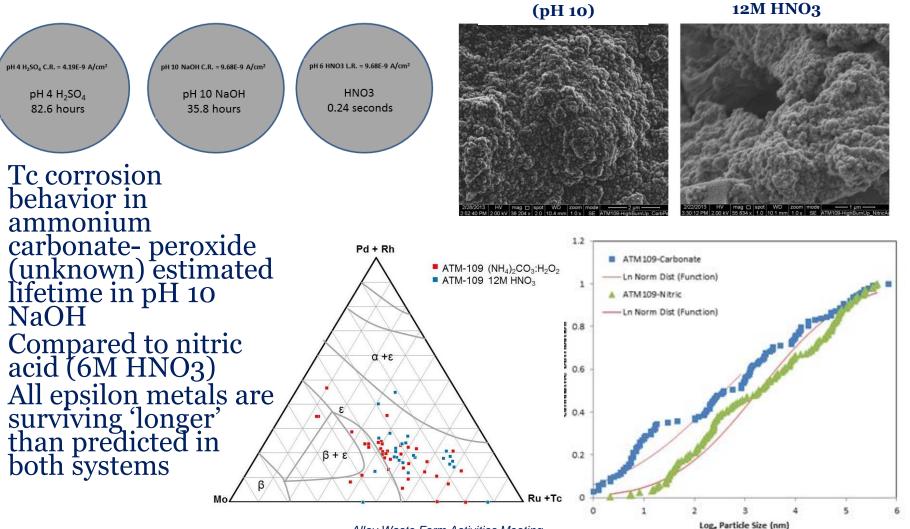
Separations


- Traditionally, dissolution of Tc occurs in high concentrations of nitric acid.
- Some Tc is also found "un-dissolved" in the UDS.
- Tc(VII) is extracted with U(VI) into an organic phase then isolated.
- Tc can be isolated by anion exchange, liquid-liquid extraction, precipitation, volatilization and/or distillation, and electrochemical separation.

Before U Extraction

After U Extraction

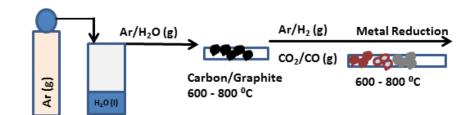
Tc Waste streams

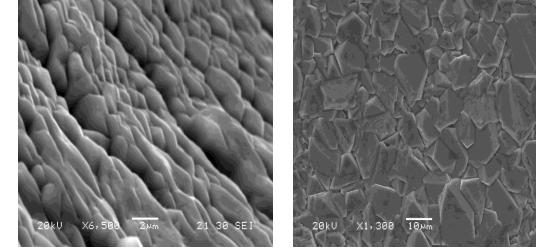

Introduction

- Most Tc generated found in liquid phase
 - Can vary with burnup and UO2+x
- Nominal Tc distribution
 - Total Tc = 1.04 kg
 - Undissolved solids (UDS) ~ 26%
 - Tc(VII) ~ 74%

Nominal Metals Contents of Waste Streams kg/1000 kg fuel (51 MWd/MT 20-year cooled)

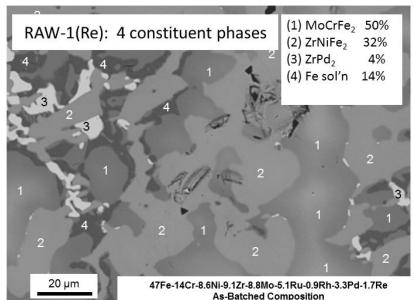
	UDS waste Tc waste		TRUEX waste	
Element	(to alloy WF)	(to alloy WF)	(to alloy WF)	(to glass WF?)
Fe	0	may be added to recover Tc	may be added to recover dis. metal	0
Zr	1.86 as a	oxide 0	3.78 as oxid	de <mark>O</mark>
Мо	4.75	0	0	0.36
Tc	0.27	0.87 reduci	ible 0	0
Ru	1.64 in	ε-phase Ο	1.65	0.20
Rh	0.24	0	0.37	0.00
Pd	0.68	0	1.29 redu	icible 0.38
Ag	0.05 red	ucible 0	0.05	0.01
Sn	0	0	0.14	0.01
Total from fuel	9.50 kg	0.87 kg	7.27 kg	0.96 kg (+Cs/Sr/Ba/Rb)


Epsilon metal characterization



Alloy Waste Form Activities Meeting March 5, 2014

Tc Metal Isolation


- Tc isolated from solution must be converted to metal
 - Thermal Reduction
 - H2(g), steam reformation
- Chemical Reduction
 - NaBH4/Zn in boiling HCl
- Electrochemical Reduction
 - 1 M H2SO4at high current densities (1 A/cm2)
- Examine Tc metal
 - Benchmark
 - Potential waste form

Iron solid solution: Proposed Waste Form

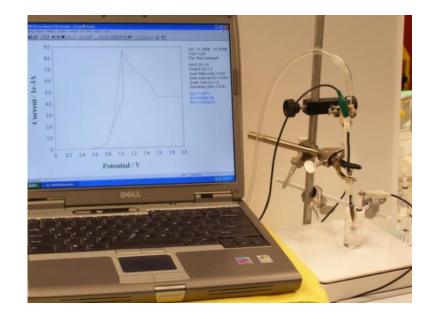
- Fe metal as major component of waste form
 - Provides low melting point
 - High solubility of metal fission elements
 - Utilization of fast reactor cladding for waste form
- Fe based phases from fission elements can be generated
- 14 % of total phases are Fe solid solutions
 - Tc incorporates into Fe phase
 - Galvanic coupling effects
 - Examine Tc loading capacity

Pt Counter


Sat. Ag/AgCl Reference

Tc Working Electrode

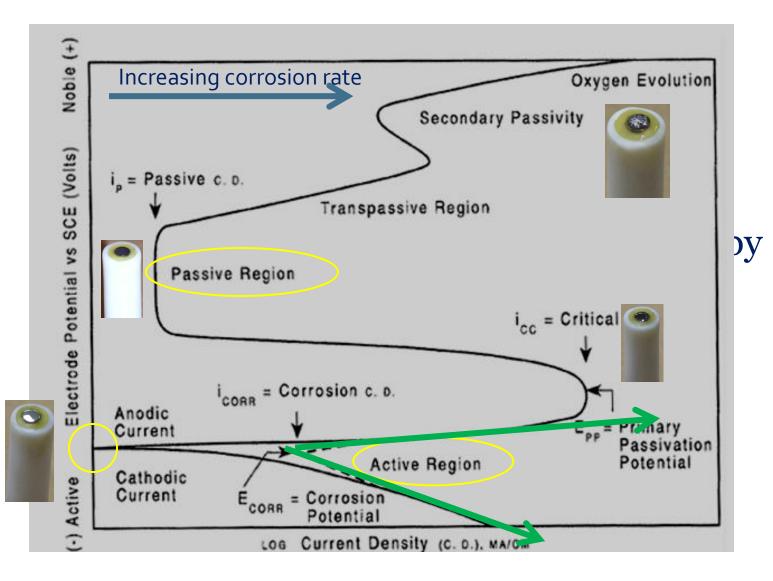
Cyclic voltammetry of Tc(VII)


- Multiple peaks associated with oxidation and reduction
 - KTcO4 in DI H2O
 - Au W.E.
 - Pt Foil C. E.
 - Sat. Ag/AgCl R. E.
- Insight into corrosion behavior is limited by this traditional technique

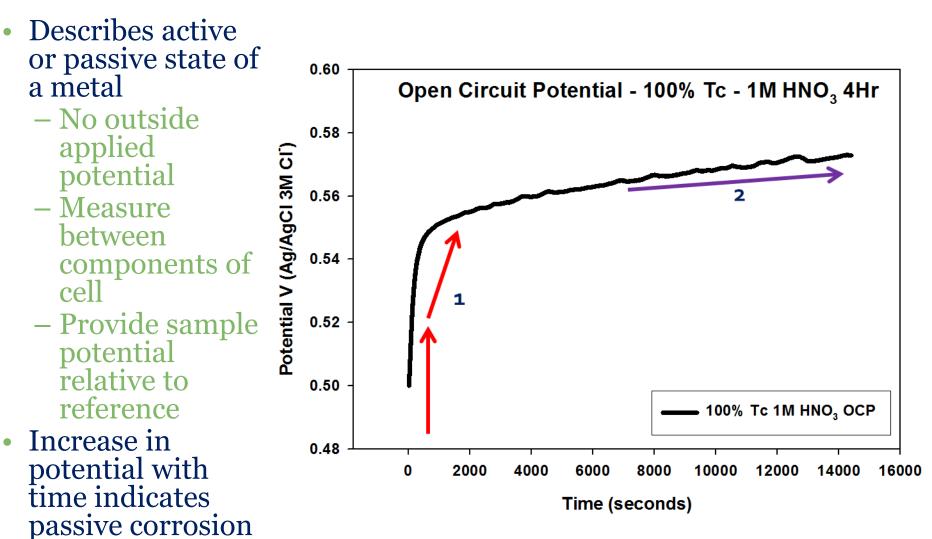
Cyclic Voltammetry TcO₄ - Gold Working Electrode

Experimental conditions

- Metals
 - Tc metal
 - Tc alloys
 - 1-8 % by atom in Fe
 - 2-10 % by mass in Stainless Steel (316 SS) and Zr
 - 85 % SS/ 15 % Zr
- Imaging
 - -SEM/EDX
- Various Solutions
 - HCl, H₂SO4, HNO3, NaOH, NaCl
- Electrochemistry of systems

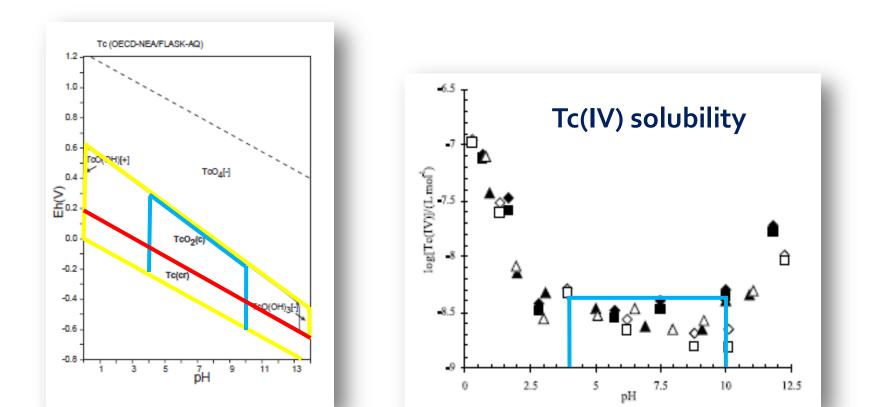


Solution	Composition	
Acidic	1E-4M H ₂ SO ₄	
Acidic Brine	$1E-4MH_2SO_4+0.01MNaCl$	
Basic	1E-4M NaOH	
Basic Brine	1E-4M NaOH + 0.01M NaCl	
Brine	0.01M NaCl	
Neutral	0.2M Borate Buffer	

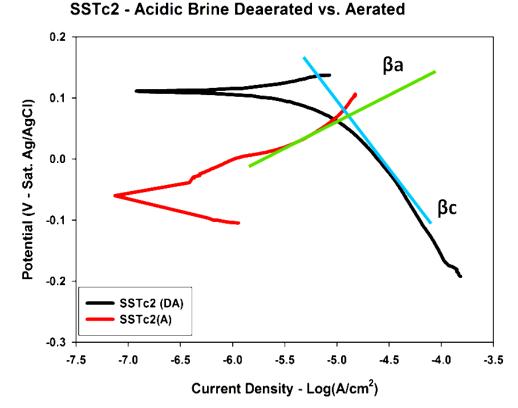

Electrochemical Techniques

- Open Circuit Potential (OCP)
 - States of corrosion
 - Active: No formation of different phase during corrosion
 - Passive: Formation of different phase during corrosion (i.e., oxide layer)
 - Potential where corrosion dominates
- Linear Polarization Resistance (LPR) and the Tafel plot
 - Instantaneous corrosion rates at examined potential regions
 - Potential identification of passivity
- Electrochemical Impedance Spectroscopy (EIS)
 - A corrosion probing tool using equivalent circuit modeling
 - Potentials more electropositive than OCP
- Bulk Electrolysis (BE)
 - Examine release behavior from metal above OCP
 - Real material leach rate

Electrochemical Techniques


Open circuit potential

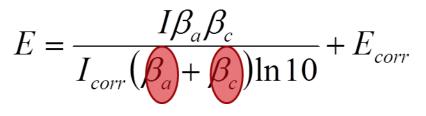
- 1. Rapid rise in OCP is observed with Tc metal in 1M HNO₃
- 2. Equilibrium partially indicated by small potential (E) changes

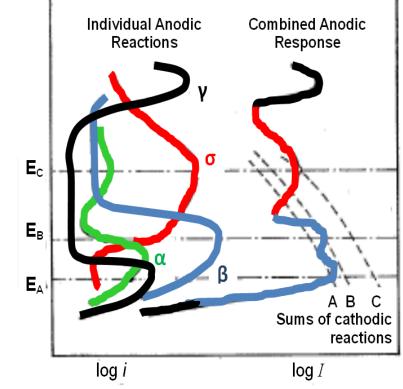

Open circuit potential

- Shows stability of dominant phases in Eh/pH diagram
 - provides little insight into corrosion kinetics

Linear Polarization and the Tafel Plot

- Floating OCP for 4 hrs
- Polarization
 - -30 mv to +300 mV, non-deaerated solution
 - +30 mV to -300 mV, deaerated solution
 - Scan rate = 0.1 mV/sec
- RP value determined by Tafel constants from de-coupled polarization curves
 - Reported in Ω , or $\Omega \cdot \text{cm-2}$

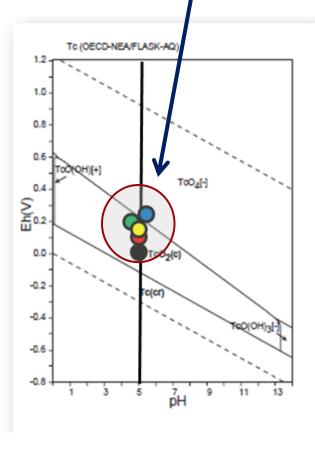

Effect of radical O₂* formation should be minimized on the cathodic reaction, therefore predicting Tafel constant sshould be better estimated of corrosion rate.


Linear polarization resistance (LPR) measurements

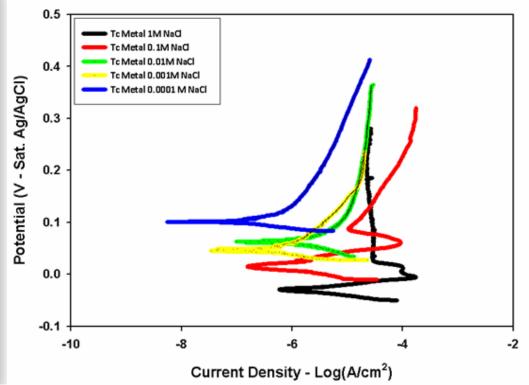
 Anodic and cathodic polarization curves evaluated following stabilization in OCP

$$R_P = \frac{dE}{dI} \quad as \ dE \to 0$$

Where:

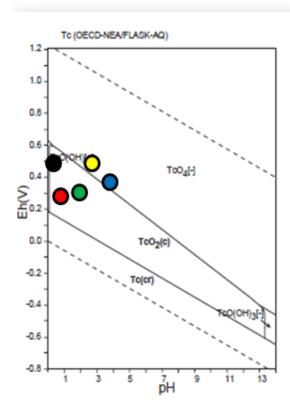


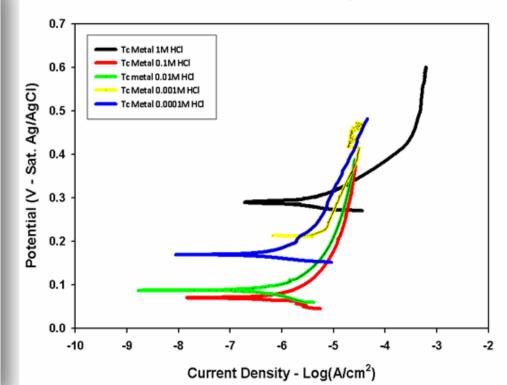
The Stern-Geary equation predicts that for $E > E_{CORR}$ the anodic reaction predominates and for $E < E_{CORR}$ the cathodic reaction predominates.


Tc metal LPR - Sodium Chloride

Tc(IV) will dominate, kinetically limited

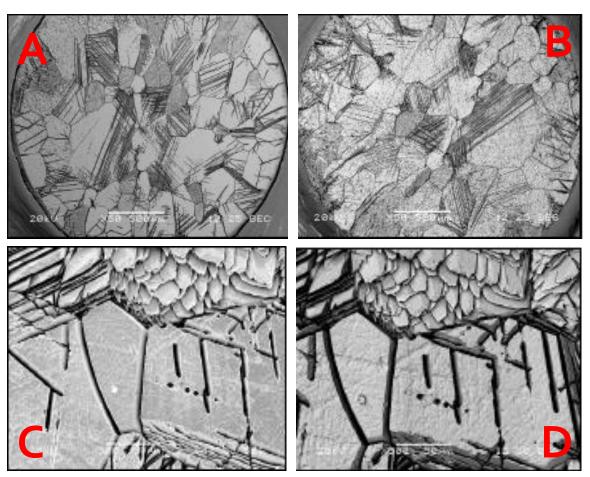
	Tc Metal			
	Rp - Ω	Corr Rate A/cm2	OCP Sat. Ag/AgCl	OCP NHE
1M NaCl	24122	5.838E-04	-0.029	0.168
1E-1M NaCl	112346	1.559E-04	0.015	0.212
1E-2M NaCl	76334	9.624E-05	0.063	0.260
1E-3M NaCl	235380	4.688E-05	0.049	0.246
1E-4M NaCl	473488	5.488E-06	0.101	0.298


Anodic Polarization Curves - Tc metal Non deaerated NaCI


Tc metal LPR - Hydrochloric Acid

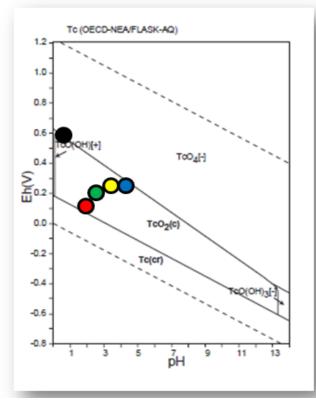
• Tc is "immune" to release in reducing acids

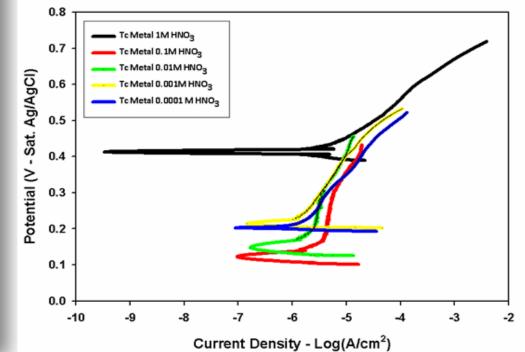
	Tc Metal			
	Rp - Ω	Corr Rate A/cm2	OCP Sat. Ag/AgCl	OCP NHE
$1MH_2SO_4$	311727	9.648E-05	0.319	0.516
$1E-1MH_2SO_4$	103578	2.617E-04	0.431	0.628
$1E-2MH_2SO_4$	183538	4.355E-04	0.360	0.557
$1E-3MH_2SO_4$	1060000	6.077E-05	0.177	0.374
$1E-4MH_2SO_4$	520000	4.164E-06	0.378	0.575



Anodic Polarization Curves - Tc metal, Non deaerated HCI

SEM - Tc metal, 1 and 2M HCl

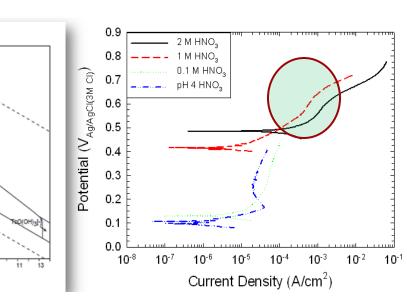

- Bulk Electrolysis
 - $-\mathbf{A/C}$ E = [+0.6 V Ag/AgCl]
 - 1M HCl
 - **-B/D**
 - E = [+0.6 V Ag/AgCl]
 - 2M HCl

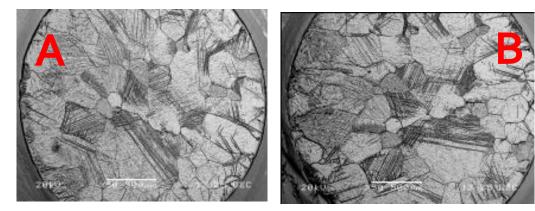

Tc metal LPR - Nitric Acid

 At or below 1M HNO3, Tc metal corrodes slowly but passive states or adsorption is observed

	Tc Metal			
	Rp - Ω	Corr Rate A/cm2	OCP Sat. Ag/AgCl	OCP NHE
1M HNO ₃	76608	1.928E-03	0.412	0.609
1E-1M HNO ₃	217687	9.367E-05	0.122	0.319
1E-2M HNO ₃	251708	1.672E-04	0.147	0.344
1E-3M HNO ₃	238870	1.447E-04	0.214	0.411
1E-4M HNO ₃	256654	9.213E-05	0.202	0.399

Anodic Polarization Curves - Tc metal Non deaerated HNO₃

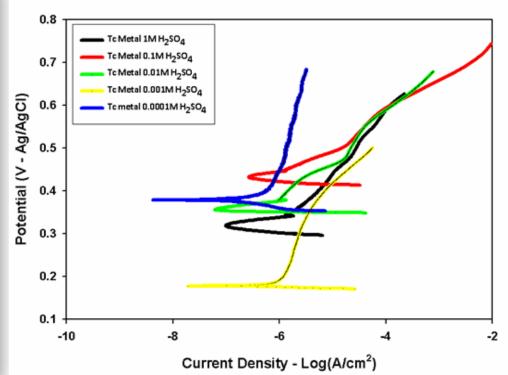

SEM- Tc metal 1M HNO3


Tc (OECD-NEA/FLASK-AQ)

TcO_4[-]

TcO₂(

- Bulk electrolysis
 - -E = [1.0 V Ag/AgCl]
 - $-t = 5 \min$
- Post BE
 - -A E = [+0.6 V Ag/AgC]
 - -1M HNO3
 - $-\mathbf{B} \mathbf{E} = [+0.6 \mathrm{V} \mathrm{Ag}/\mathrm{Ag}\mathrm{Cl}]$
 - -2M HNO3


Tc metal - Sulfuric Acid

 Tc metal is much more stable in H₂SO₄, hence deposition qualities of solution

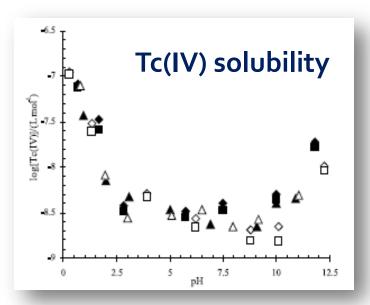
Tc (OECD-NEA/FLASK-AQ)
12
1.0
0.8-
0.6
0.4 TOO4H
ξ Ξ Ξ
0.0 TcO ₂ (c)
-0.2 - Tc(cr)
-0.4 . TeQ(OH)3[-]
-0.6
1 3 5 7 9 11 13 pH

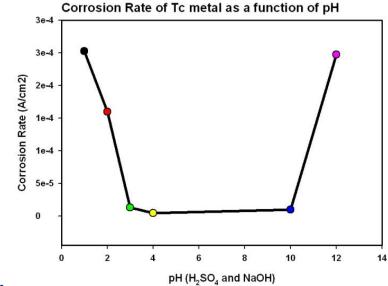
	Tc Metal			
	Rp - Ω	Corr Rate A/cm2	OCP Sat. Ag/AgCl	OCP NHE
$1MH_2SO_4$	311727	9.648E-05	0.319	0.516
$1E-1MH_2SO_4$	103578	2.617E-04	0.431	0.628
$1E-2MH_2SO_4$	183538	4.355E-04	0.360	0.557
$1E-3MH_2SO_4$	1060000	6.077E-05	0.177	0.374
$1E-4MH_2SO_4$	520000	4.164E-06	0.378	0.575

Anodic Polarization Curves - Tc metal non deaerated H₂SO₄

Tc metal - Sodium hydroxide

 Observe Tc breakdown in 1M NaOH. Active corrosion of Tc, but passivity and preferential Tc(IV) redox limits Tc(VII) formation under these conditions

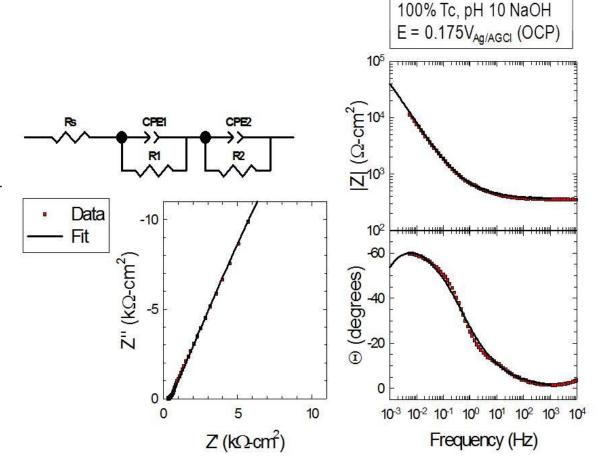

	Tc Metal			
	Rp - Ω	Rp - Ω Corr Rate A/cm2 OCP Sat. Ag/AgCl OCP N		
1M NaOH	116315	9.562E-07	0.002	0.199
1E-1M NaOH	43923	1.368E-05	-0.059	0.138
1E-2M NaOH	73331	9.824E-06	-0.008	0.189
1E-3M NaOH	185905	2.134E-06	-0.087	0.110
1E-4M NaOH	1640000	5.290E-07	0.277	0.474


Tc (OECD-NEA/FLASK-AQ) 1.2 1.0 0.8 0.6 0.4 ∑ ≝₀.₂ TcO2(c) 0.0 -0.2 -0.4 -0.6 -0.

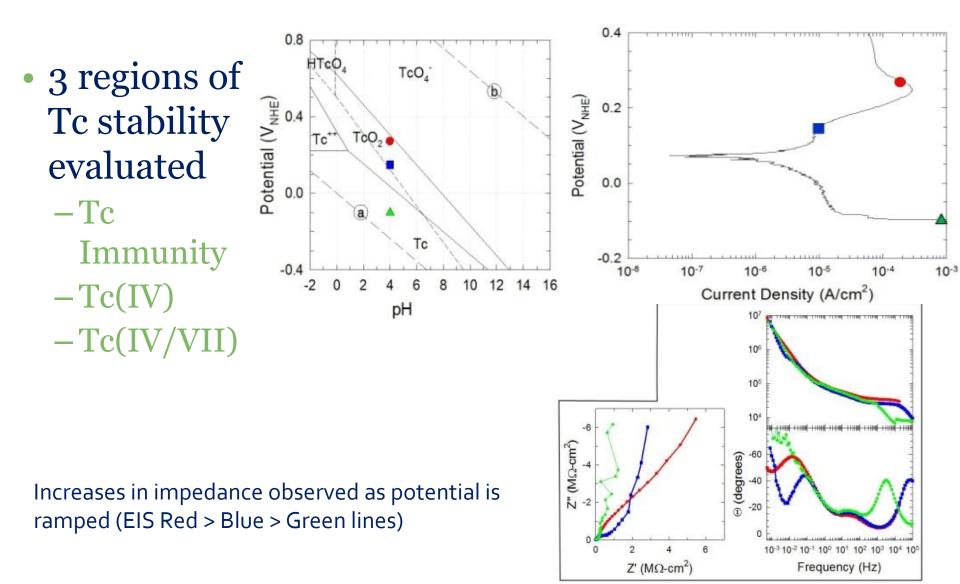
Anodic Polarization Curves - Tc metal non deaerated NaOH

Effect of pH on corrosion - non complexing solution conditions

Corrosion rate as a function of pH mimics Tc(IV) solubility shape. Both may be used to estimate life-time of each phase.

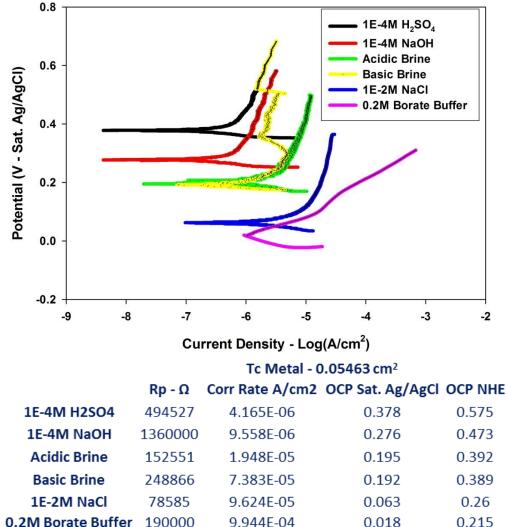

As metal degrades, if Tc(IV) stability region is observed, the dissolution rate of Tc(IV) may be evaluate.

Layers may be electrodeposited representing uniform corrosion from these solutions where the metal is not to be studied


	Electrode: Tc Metal				
Media	Media Corrosion Rate (A/cm2)				
pH1	pH1 2.527E-04				
pH 2	1.594E-04	0.657			
pH 3	1.296E-05	0.474			
pH4	4.193E-06	0.675			
pH 10	9.607E-06	0.574			
pH 12	2.469E-04	0.238			

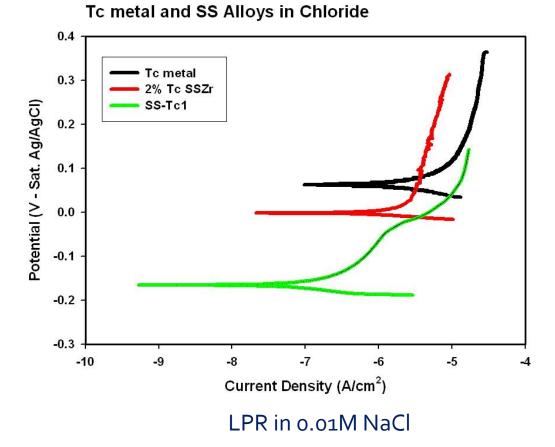
Limited EIS - Tc metal pH 10 NaOH

- Fit to a 2-resistor equivalent circuit
- Two time constants observed
 - -Layer formation
 - Oxide
 - Adsorption of OH⁻

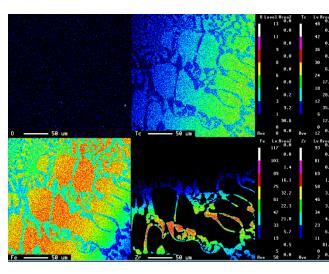

Limited EIS - Tc Metal pH 4 HNO3

31

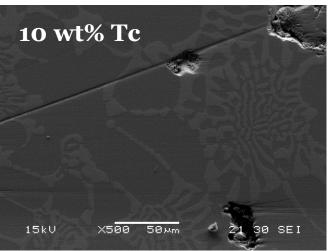
Tc Metal in the Environmental Solution Set


- Tc is not readily attacked by Cl⁻
- Passivity is observed in the basic brine solution
 - –Similar unknown layers exist in all other solutions at higher potentials
- Data suggests nobility of Tc within the environments

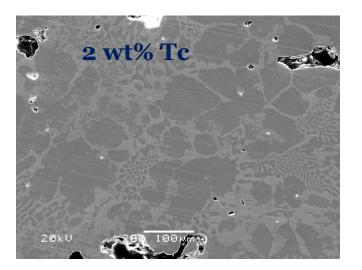
Tc Metal - Anodic Polarization

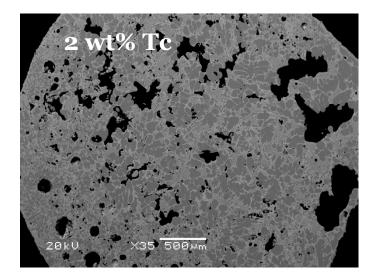

Effects of alloying Tc

- The OCP of a host material is decreased in both the SS/Zr intermetallic and Fe solid solution, stainless material.
 - In all cases, Tc does not reside in the immunity region, unfortunately.



It should be noted that Tc is more noble than either phase

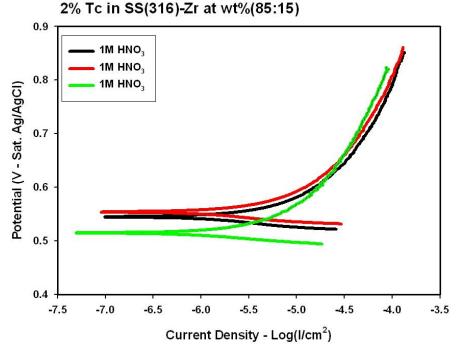

Tc in SS_{85} -Zr₁₅



Element	Dark Phase	Light Phase
Zr	0%	29%
Fe	64%	37%
Тс	11%	8%
Cr	18%	4%
Мо	2%	2%
Ni	7%	17%
Total	100.7	96.60%

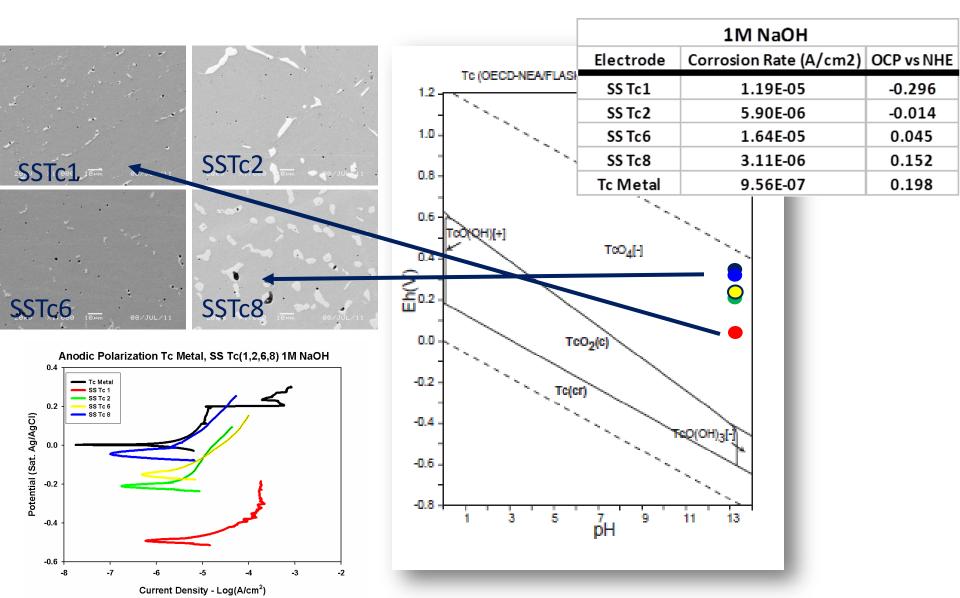
2,

2 wt% Tc SSZr in HNO₃ and Cl⁻

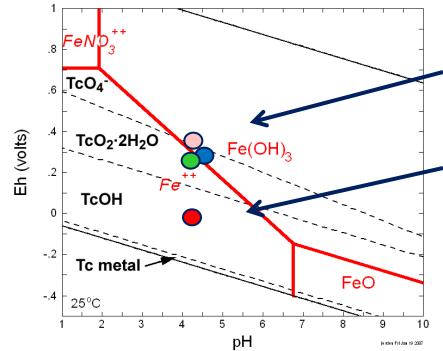

2% Tc in SS(316)-Zr at wt%(85:15) 0.5 E-1M NaCl 0.4 E-2M NaCl E-3M NaCl Potential (V - Sat. Ag/AgCI) 1E-4M NaCl 0.3 0.2 0.1 0.0 -0.1 -0.2 -8.5 -7.5 -7.0 -6.0 -5.0 -8.0 -6.5 -5.5 -4.5 Current Density - Log(I/cm²)

Alloy appears to be little effected by the presence of chloride on corrosion behavior, similar to Tc.

Semi-passive state is unchanged


Replicate experiments after polishing many times shows the behavior of the alloy is essentially unchanged over a period of 1 year.

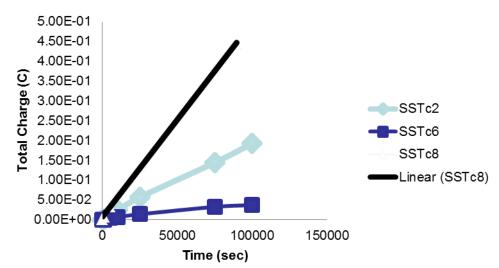
Suggests a single phase alloy may not be required to host radioelements


Fe-solid solutions - LPR 1M NaOH

36

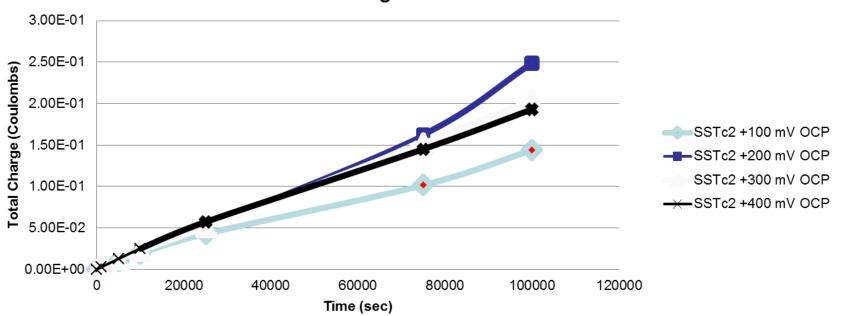
Release of Tc from materials

SSTc1,2,6,8 - Eh(V, NHE) vs pH, Acidic Brine (0.01M NaCl + 1E-4m H_2SO_4), Electrochemical Leach



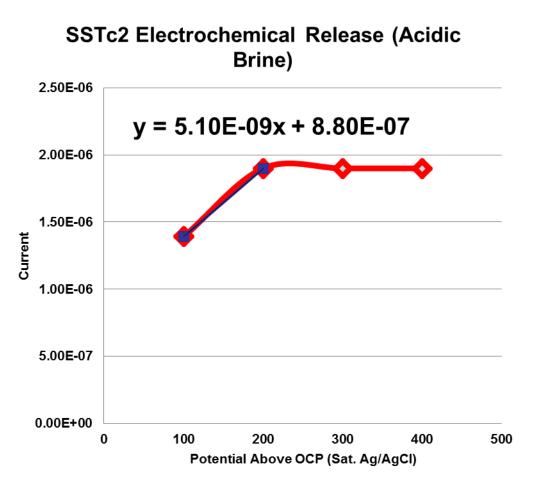
- Rate of corrosion can be correlated to total current expelled from alloy at corroding potentials
- No soluble forms of Tc are present; LS counting suggests that Tc is held in alloy effectively

SSTc2 OCP = 0.3042 V NHE SSTc6 OCP = 0.2729 V NHE SSTc8 OCP = 0.2273 V NHE


SSTc1 OCP = -0.0606 V NHE

Total Charge vs. Time (+400 mV vs OCP)

Bulk Electrolysis SSTc2 – Constant Current Plots in Acidic Brine (1E-4M H2SO4 + 0.01M NaCl)

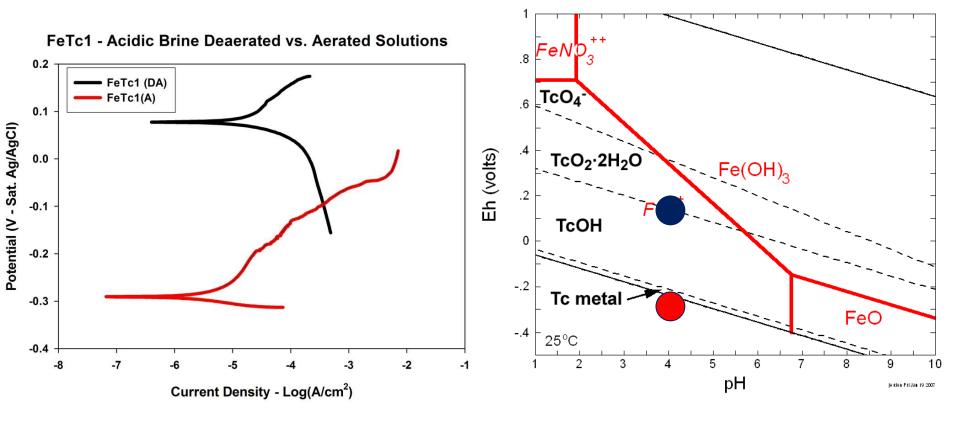

38

SSTc2 Charge Plot vs Potential

- At elevated potentials, constant current is experienced indicating that passive regions are formed on surface of sample at higher potentials.
- Each test resulted in no detectable Tc by LS counting (DL ~ 1E-8M)

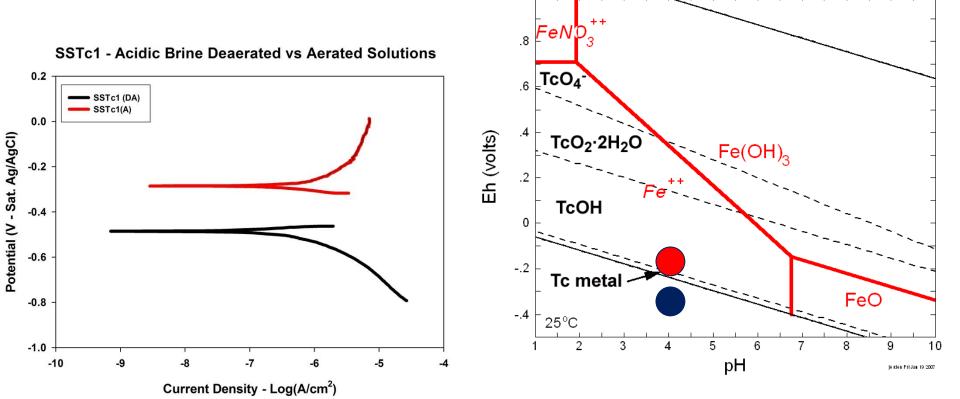
Bulk Electrolysis SSTc2 – Constant Potential, Current/Plot Slope vs. Potentials above OCP

SSTc2 - +100, +200, +300, +400 mV vs. OCP

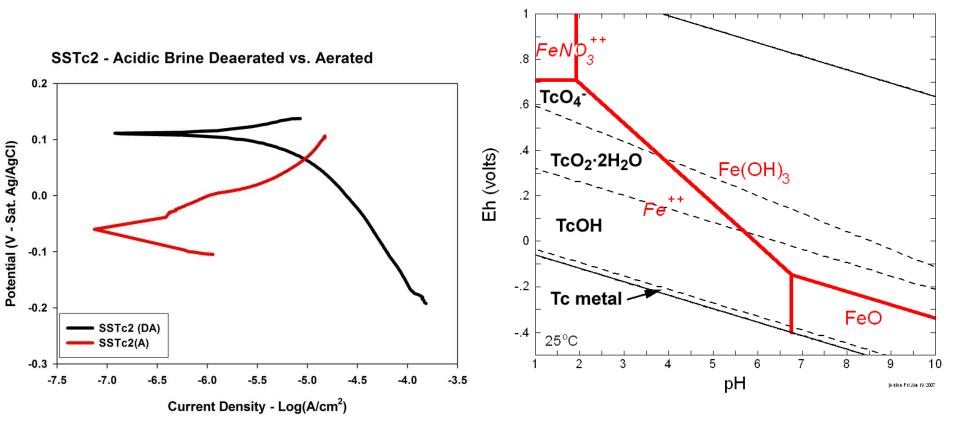

Instantaneous current plot versus potential

 $I_{CORR} \sim 1E-7$ to 1E-6 A/cm²

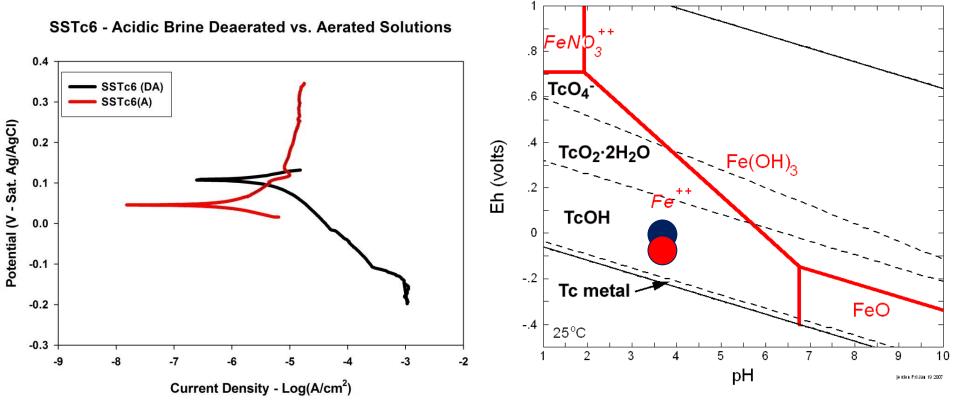
Constant potential I_{CORR}8.80E-7 A/cm²


FeTc1 - Acidic Brine LPR (DA vs A)

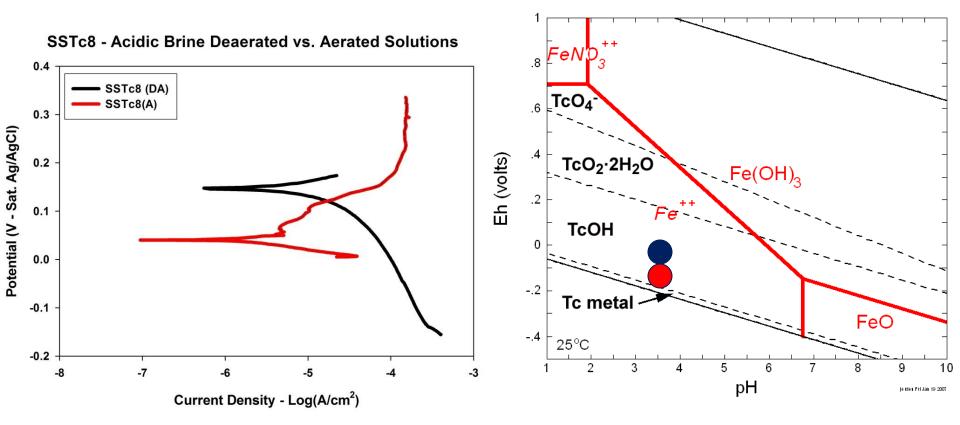
- Stainless aducts such as Cr are missing in Fe(Tc1); SSTc1 homologue
- Cl⁻ removes passivity effects


SSTc1 - Acidic Brine LPR (DA vs A)

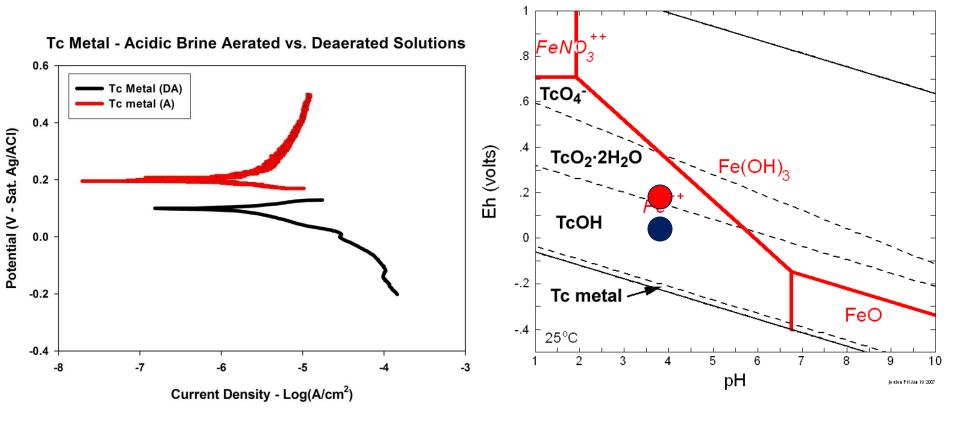
- SSTc1 Removal of O_2 makes material immune
- Cl⁻ does not effect initial passivity under these conditions


SSTc2 - Acidic Brine LPR (DA vs A)

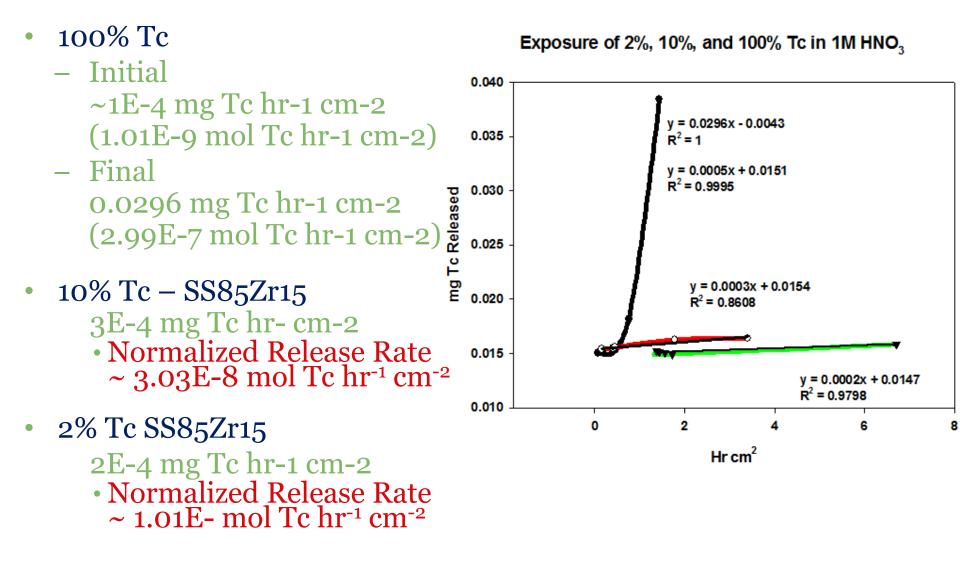
Nobility of phase increases


SSTc6 - Acidic Brine LPR (DA vs A)

OCP separation as more Tc is introduced becomes less


SSTc8 - Acidic Brine LPR (DA vs A)

• OCP separation as more Tc is introduced becomes less


SSTc8 - Acidic Brine LPR (DA vs A)

• OCP separation as more Tc is introduced becomes less

Experimental - 1M HNO3 2%, 10%, and 100% Tc

46

Experimental - 1M HNO3 2%, 10%, and 100% Tc

• 100% Tc

– Initial

- ~1E-4 mg Tc hr-1 cm-2
- (1.01E-9 mol Tc hr-1 cm-2)

– Final

- 0.0296 mg Tc hr-1 cm-2 (2.99E-7 mol Tc hr-1 cm-2)
- 10% Tc SS85Zr15 3E-4 mg Tc hr- cm-2
- Normalized Release Rate ~ 3.03E-8 mol Tc hr⁻¹ cm⁻²
- 2% Tc SS85Zr15
 2E-4 mg Tc hr-1 cm-2
- Normalized Release Rate ~ 1.01E-7 mol Tc hr⁻¹ cm⁻²

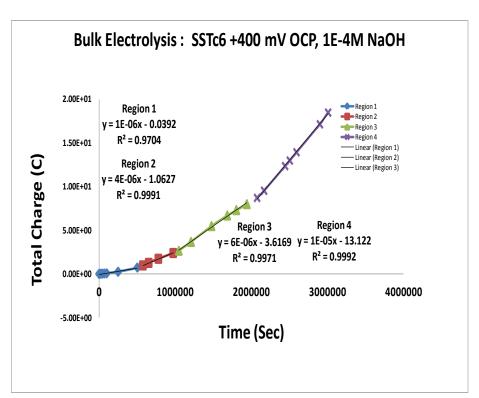
	Release Rate (mols Tc cm ⁻² hr ⁻¹)				
Electrode	2.25 hr	69.33 hr	Noramlized (Tc)		
Tc Metal	3.46E-08	8.91E-09	8.91E-09		
FeMoTc	2.78E-07	1.45E-07	1.45E-05		
FeTc1	4.17E-07	1.05E-07	1.05E-05		
SS316_Tc1	2.61E-08	1.24E-09	1.24E-07		
SS613_Tc2	2.62E-08	1.12E-09	5.60E-08		
SS316-Tc6	3.23E-08	2.36E-09	3.93E-08		
SS316_Tc8	2.78E-08	1.20E-09	1.50E-08		
SSZr 10%Tc	1.34E-07	1.37E-08	1.37E-07		
SSZr 2%Tc	6.49E-09	3.85E-10	1.93E-08		

Effect of aeration and true release rates of Tc

True release rates of Tc, in current density are orders of magnitude lower than that observed in LPR data

			ч	cea mer and	3
Media	Deaearted HCI			Deaerated HNO ₃	
	mols Tc cm ⁻² hr ⁻¹	(A cm ⁻²)		mols Tc cm $^{-2}$ hr $^{-1}$	(A cm ⁻²)
nH 2 5	3 81F-10	1 58F-1/		9 70F-10	1 02F-14

Tc Metal Only - De-serated HCl and HNO


			5		
	mols Tc cm ⁻² hr ⁻¹	(A cm ⁻²)	mols Tc cm ⁻² hr ⁻¹	(A cm ⁻²)	
pH 2.5	3.81E-10	1.58E-14	9.70E-10	4.02E-14	
pH 1	2.25E-10	9.33E-15	1.29E-09	5.35E-14	
0.1M	4.37E-10	1.81E-14	1.00E-08	4.15E-13	
1M	4.50E-10	1.87E-14	2.00E-08	8.29E-13	
2M	9.81E-10	4.07E-14	4.00E-08	1.66E-12	
6M	2.05E-09	8.50E-14	8.63E-05	3.58E-09	

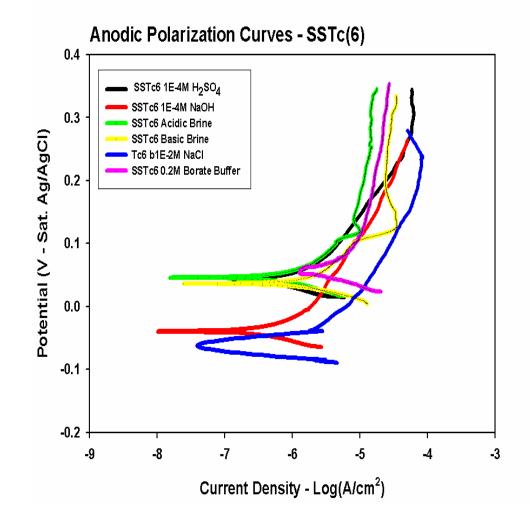
Tc metal and Alloys - Aerated HNO₃

Electrode	Norm. Rel Rate	Current Density (CD)
	mols Tc cm $^{\text{-2}}\text{hr}^{\text{-1}}$	(A cm⁻²)
Tc Metal	8.91E-09	3.69E-13
	2.99E-07	1.24E-11
FeMoTc	1.45E-05	6.01E-10
FeTc1	1.05E-05	4.35E-10
SS316_Tc1	1.24E-07	5.14E-12
SS316_Tc2	5.60E-08	2.32E-12
SS316_Tc6	3.93E-08	1.63E-12
SS316_Tc8	1.50E-08	6.22E-13
SSZr 10%Tc	1.37E-07	5.68E-12
	3.03E-08	1.26E-12
SSZr 2%Tc	1.93E-08	8.00E-13
	1.01E-07	4.19E-12

SSTc6 Bulk Electrolysis 1E-4M NaOH

- Open Circuit Potential evaluated
- Potential (V) vs Sat. Ag/AgCl
 +400 mV vs OCP applied
- Solution volume
 - 15 mL
- Time
 - ~ 3,010,000 sec
 - (836 hr)
- Total Charge (C)
 - 18.485 C
- End Current
 - +1.9145 E-7 A Instantaneous
 - Total amperage: 9.882E-2
- Approximate Tc concentration
 - Below 1.686E-7 M Tc
 - Background = 18 CPM
 - Raw Counts = 52

Assuming uniform release of Tc, total mols ~ 2.529E-9 Tc release rate: 3.025E-12 mols per hr Time = 3,010,000 sec Tc Current: 1.25E-16 Amps Compare Tc metal ~ 1-2 orders of magnitude greater release from bare metal


SSTc6 Bulk Electrolysis 1E-4M NaOH

- Open Circuit Potential evaluated
- Potential (V) vs Sat. Ag/AgCl
 +400 mV vs OCP applied
- Solution volume
 - 15 mL
- Time
 - ~ 3,010,000 sec
 - (836 hr)
- Total Charge (C)
 - 18.485 C
- End Current
 - +1.9145 E-7 A Instantaneous
 - Total amperage: 9.882E-2
- Approximate Tc concentration
 - Below 1.686E-7 M Tc
 - Background = 18 CPM
 - Raw Counts = 52

Assuming uniform release of Tc, total mols ~ 2.529E-9 Tc release rate: 3.025E-12 mols per hr Time = 3,010,000 sec Tc Current: 1.25E-16 Amps Compare Tc metal ~ 1-2 orders of magnitude greater release from bare metal

SSTc6 Bulk Electrolysis 1E-4M NaOH and Environmental Solution Set

Conclusion/Future Work

- In all alloys, 2% Tc addition creates more noble materials, though Tc is the most noble.
- Tc corrosion rate is little changed by environment solutions and Cl-
- Tc is considered a low-corroding material relative to other active metals
 - Tafel constants should be evaluated and be input with correction factors relative to Tc release rate
 - This simplifies the "model" of corrosion....Tc doesn't and the host phase does until galvanic protection fails.
- Metal alloys can be recycled
- Metal alloys can be produced direct from sequeterization of TcO₄⁻ using metal amines
- Tc isolation using electrochemical techniques linked to potential ranges appropriate for TcO₂ & Tc metal deposition

Study 1: Formation of Co[(NH₃)₆](TcO₄)₃

- Starting compound is insoluble in MeOH, Acetone, and CH_2Cl_2
- Ending compound is slightly-soluble in DI H_2O and MeOH
- Used 0.2272 g $[Co(NH_3)_6]Cl_3$
- Tc metal = 200 mg, with 2% excess TcO_4^- g
- Formation of precipitate is immediate 0.2576 g recovered yield: 46.6%
- Estimated Solubility Made solution: 0.0989 g in 1 mL DI H₂O 26 ° C
 - Estimated Solubility of Co-Tc Compound: 0.40 mg per mL (quantified by LSC)

Powder XRD - CoTc Precipitate under H5

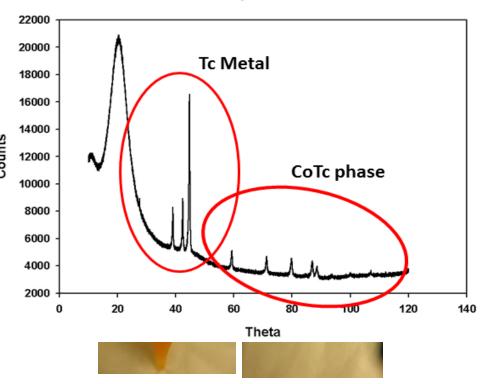


Figure X: Hexamminecobalt(III) chloride in 10 mL of water and precipitation after inclusion of pertechnetate

Study 2. Electrodeposition of Tc

• Tc deposits on Cu in sulfuric acid...

- Electrodeposition of Tc from KTcO₄ in water
- $0.32M H_2SO_4 + 0.7M Oxalic acid$
- 0.7M Oxalic acid (right) on Cu for 500 sec

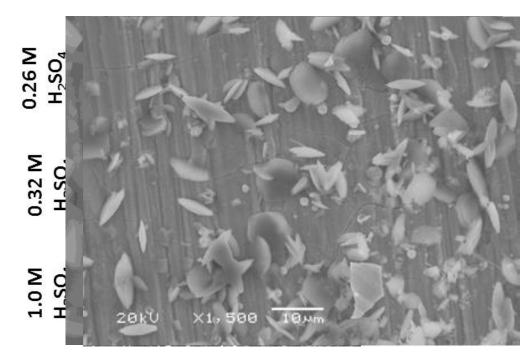
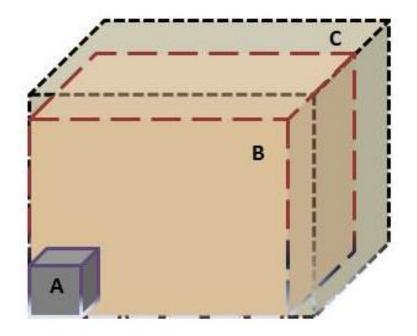


Figure X. Insert Tc electrodeposition images from solution on Cu.....

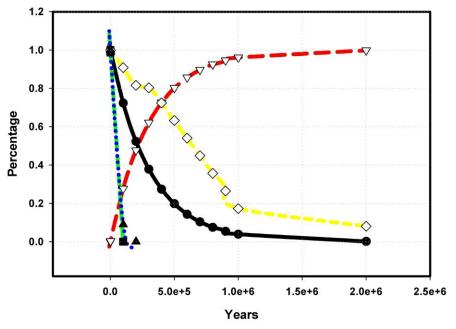
Study 3: Lifetime Assumptions


	Tc metal	SS(Tc2 wt%)Zr	SS(Tc1.34 wt%)
 The dimensions of the exposed surface area of each alloy is: 	3136 cm ²	54 756 cm ²	70 225 cm ²
2. The instantaneous corrosion rate of each material is:		1.54E-6 A/cm ²	1.81E-8 A/cm ²
3. The instantanesous corrosion rate - Coulombs over the face:	5.46E-03	8.43E-02	1.27E-03
The number of electrons per coulomb:	6.24E+18		
The number of electrons required to release an atom:	7	3	3

Waste Form Predictions - Lifetime

- Anion exchange decontaminates uranium from technetium with separation factors great enough to reuse U or directly dispose of the material.
- Accompanying nitrate has successfully been removed from the elution stream in the presence of the carbon sources triethanol amine and D,L-ascorbic acid while simultaneously generating a phase that is reducible to generate Tc metal
- The generated Tc metal can suitably be placed in a metallic host phase and characterized by a variety of methods
- Alloying Tc will dramatically increase the waste loading volume of materials

2000 kg Tc ~ 0.174 m³ SS(Tc2%)Zr ~ 12.73 m³ SS(Tc1.34%) ~ 18.5 m³


• Lowering the corrosion rate of the bulk will dramatically influence the life-time of the host phase. The trade off is the increase in surface area of the "waste package"

Lifetime Approximation

With many assumptions being made, the estimated life-time of Tc metal, SS(Tc2%)Zr and SS(Tc1.34%) based on LPR data, it can be expected that the direct corrosion rate of each material will not live longer than 80,000 yrs (100% Tc), 100,000 yrs (SS(Tc2%)Zr, and 1,000,000 yrs (SS(Tc1.34%)

Lifetime approximation corrections relative to Metal Waste form conceptual model

- 2% Tc in SS_{85}/Zr_{15} placed in H2O over a period of 4 years as of Feb 2014 still in water
- Sample counted by LSC (100 µL, DL 1E-9 M Tc)
- Solution Volume 0.05L \rightarrow mols Tc 5E-11
- Atoms Tc ~ 3.011E13
- Electrons ~ 4/release ~ 1.2044E14
- Coulombs @ 0.01M NaCl 1.54E-6 A/cm²
- $97.13 \text{ C} (2\% \text{ Tc} \sim 1.94 \text{ C}) = 1.046\text{E}-4\text{M}$
- Lifetime extension (10,000 100,000 in pure water)

<u>Bare surface oxidation rate</u> moderated by <u>passivation</u> and dissolution affinity $FR(T,RN) = \overset{\searrow}{B}(Eh,T,pH) \times \overset{\swarrow}{P}(Cl^{-}) \times \overset{\checkmark}{D}(T,RN)$

Acknowledgements

- Radiochemistry group at UNLV
- ANL/LANL/PNNL/SRNL
 - –U.S. Department of Energy (Grant No. DE-FG07-01AL67358)
 - -NEUP
 - -U.S. Department of Energy, Office of Nuclear Energy, under Contract DE-AC02-06CH11357

Upcoming Webinars in the Nuclear Fuel Cycle Series

Nuclear Repository ScienceHigh Level Waste

NAMP website: www.wipp.energy.gov/namp